High Voltage Direct Current (HVDC) Power Transmission
Alternatives for power transmission
Alternating current (AC)

- Advantages
 - Voltage transformation
 - Current interruption
 - Easy conversion into mechanical energy and vice versa
 - Frequency as system-wide control signal
 - Meshed networks

- Limitations
 - Long distance transmission
 - Difficult to use cables, already at ≈ 100 km high reactive power consumption

Up to now the solution of choice for Europe.
Alternatives for power transmission
High voltage direct current (HVDC)

![Image of HVDC projects in Asia and Europe]

- **Advantages**
 - Low losses (direct current)
 - Small footprint
 - No limitations in length
 - Cables can be used over long distances as there is no reactive power consumption

- **Disadvantages**
 - Base costs for converter stations ⇒ economically interesting only at longer distances (offshore: from ≈ 80 km, onshore beyond some 100 km)
 - Point-to-point connection (multi-terminal possible with VSC HVDC)

Proven solution for long distance transmission and sub-sea cables.
HVDC technologies

- HVDC Classic (CSC) 300 – 6'400 MW (2'000 MW)
 - Current source converters
 - Line-commutated thyristor valves
 - Typical layout: valve building and outdoor installation of filters and switchyards
 - Overhead lines or mass-impregnated cables
 - Minimum short circuit capacity > 2x converter rating
 - Bulk power long distance transmission, coupling of asynchronous power systems

- HVDC Light® (VSC) 50 – 1’100 MW (2’400 MW)
 - Voltage source converters
 - Self-commutated IGBT valves
 - Typical layout: complete installation (except transformers) indoor
 - Extruded cables or overhead lines
 - No minimum short circuit capacity, black start
 - Multiple areas of application

CSC: current source converter
VSC: voltage source converter
Comparison of HVDC technologies

<table>
<thead>
<tr>
<th></th>
<th>HVDC CSC (Classic)</th>
<th>HVDC VSC (Light)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Converter technology</td>
<td>Thyristor valve, grid commutation</td>
<td>Transistor valve (IGBT), self commutation</td>
</tr>
<tr>
<td>Relative size</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>
| **Cable technology** | - Oil paper
- Field joints (5 days)
- Sea cable installation special ship (3 available) | - Extruded
- Prefabricated land joints (1 day)
- Sea cable installation from barge (> 200 available) |
| **Typical delivery time** | 36 months | 24 months |
| **Static reactive support** | yes | yes |
| **Dynamic reactive support** | no | yes |
| **Independent control of active and reactive power** | no | yes |
| **Scheduled maintenance** | typically < 1 % | typically < 0,5 % |
| **Losses typical system** | 2,5 – 4,5 % | 4 – 6 % |
| **Multiterminal operation** | Complex, limited to 3 terminals | Simple, no limitations |
Development of HVDC technologies

- HVDC Light® systems in operation since 1997
- Rapid development since mid of the 90ies due to requirements of emerging markets (HVDC Classic) and in Europe/USA (HVDC Light®)
High voltage direct current transmission
Areas of application

- HVDC Classic (CSC)
 - Point to point transmission of bulk power over very long distances
 - Sea cables (> 100 km)
 - Connection of strong, asynchronous grids with high power

- HVDC Light® (VSC)
 - Point to point transmission of small up to medium power over long distances
 - Connection of several (few) feed-in points, e.g. to support an existing AC grid
 - Suitable to be connected to weak grids or to supply passive loads (e.g. offshore platforms)

CSC: current source converter
VSC: voltage source converter

Applicability always depending on specific situation, difficult/impossible to come to general conclusions!
Examples of projects
Gotland – HVDC Light®

- Capacity: 50 MW
- Length: 70 km
- In operation since 1999
- Requirements
 - additional wind power, 90 MW
 - minimized environmental impact
- Advantages
 - voltage control for wind turbines
 - increased transmission capacity of parallel AC line
 - loss reduction on whole island due to improved voltage control

1953: first HVDC world-wide
1999: first HVDC Light®
Murraylink – HVDC Light®
The longest land cable in the world

- Capacity: 220 MW
- Length: 160 km
- In operation since 2002
- Connecting the grids of Victoria and Southern Australia
- Experiences
 - more than 400 cable joints (150 kV)
 - in operation since more than four years
 - no failures
 - availability above 98.5 %
 (including planned maintenance!)
Cross Sound – HVDC Light®
The first large VSC project

- Capacity: 330 MW
- Length 40 km
- In operation since 2003

Requirements
- Improvement of security of supply in Connecticut/Long Island
- Interconnection of two electricity markets

Advantages
- No grid enforcements required
- Improved security of supply because of continuous voltage and reactive power control
- Low space requirements
Cross Sound – HVDC Light®
Stabilizing the system instead of being sensitive

Cross Sound Cable – Dynamic Response to Network Faults
March 17, 2005 – Cross arm fault on 353 Line (345 kV)
NorNed HVDC cable, Norway–The Netherlands
The longest cable in the world

- Requirement
 - Connection of two power markets
 - Optimal use of differences in production and consumption

- ABB response
 - Turnkey 700 MW system with new ± 450 kV converter system
 - Longest cable in the world: 580 km

- Customer benefit
 - Very low losses (system losses: 3.7 %)
 - Avoiding about 1.7 mio t CO₂ emissions per year
 - Support of wind power development in The Netherlands

Customer: TenneT (NL) and Statnett (N)
In operation: 2008
Xiangjiaba–Shanghai ± 800 kV UHVDC, China
The biggest transmission system in the world

- **Requirement**
 - Utilization of renewable energy (hydro power) 2’000 km apart from load centers

- **ABB solution**
 - Most powerful and longest transmission system in the world
 - ± 800 kV UHVDC, 6’400 MW

- **Customer benefit**
 - High efficiency - 93 %
 - Compact footprint - 40 % less space requirement compared to conventional solution
 - Reliability: outage probability < 0.5 %

Customer: SGCC
In operation: 2010-2011
BorWin 1 – HVDC Light®, Germany
The world’s first HVDC offshore wind farm connection

- Capacity: 400 MW (phase 1)
- Length: 128 km sea cable, 75 km land cable
- Ready for operation: October 2009
- Requirements
 - Turnkey project execution
 - Integration into transmission grid according to grid code
 - Short delivery time
- Advantages
 - Modular extension concept
 - About two years delivery time
The future? A scenario for Europe
Power and productivity for a better world™